DfRSoft... Overview

Design for Reliability Software

for complete DfR Engineering

Thank You for your interest Dr. Alec Feinberg

Author: Design for Reliability, Founder of DfRSoft

Summary of *DfRSoft*... Tools

• RELIABILITY SOFTWARE

- · Reliability Plotting (Weibull etc.) ·Reliability Statistics ·MTBF Predictions ·System Reliability ·Acceleration
 Models ·Automated Qual Plans ·Accelerated Test Plans ·Derating Guidelines ·Design FMEA ·Parametric Reliability
 Analysis · Reliability Growth ·Environmental Profiling (CALT like analysis but easier to apply), Engelmaier BGA Fatigue
 Life Model
- QUALITY SOFTWARE
- · · ·SPC Control Charts ·Normal & Lognormal Probability Plotting ·Lot Sampling Plans ·Cpk -Six Sigma Yield
 Analysis ·Field Return Analysis ·Availability & Sparing
- PHYSICS OF FAILURE & DfRQ LIBRARY
- 'A Library of Analysis Tools, PoF Knowledge, Design Guidelines, and DfRQ Tests
- DfRQ ENGINEERING TOOLS
- Vibration & Shock Analysis 'Thermal Analysis ' Electrical Analysis ' Corrosion Prevention ' Misc Tools-DfRQ Cost
 Analysis ' Engineering Conversions ' Electrostatic Discharge Design & Guidelines ' Skin Depth Engineering

DfRSoft...

page 2 / March 27, 2015

FUNDAMENTAL INSTRUCTIONS

- Entries always go in GREEN AREAS ENTER
- POP-UPS Instructions are found in any difficult tool. They look like:

- Simply slide your curser on the word and the instructions will show up.
- Pop ups can be moved around and you can add your own comments.
 Simply right click on the pop up area and select edit comment.

DfRSoft's Welcome Page

Hyperlink Index To Menu Tools

DfRQ Tools for Everyday Use

Huperlink to 2015 updated

Support@dfrsoft.com

Portable Tools you can use Anytime Anywhere

DfRSoft Lifetime - www.DfRSoft.com Updated 3/20/2015

Software Copyright DfRSoft, All Rights Reserved.

Contact: Customer Support 617-943-9034

Reliability Tools

Quality Tools

Menu Hyperlink

ink Engine

Engineering Tools

Physics of Failure Library

Welcome To DfRSoft... Design for Reliability, Quality & Engineering The Theory of Everything for Design Assurance in One Tool

with Friendly Pop-up and Videos Instructions

Code for Below Areas Supplied on Purchase. 217 PARTS COUNT, TELCORDIA PARTS COUNT 217 DETAILED STRESS, STRESS PREDICTION QUAL PLANS, ESD & DERATING ANALYSIS PoF & DfRQ Library, Derating, ESD

TOOLS IN EXC

By using this software you agree to our License Agreement >

License Agreement

Click Here to Hyperlink to DfRSoft Subject Menu

page 4 / March 27, 2015

DfRSoft Hyperlink Open Style Menu

How to Find DfR Tools & Videos: Simply use the DfRSoft Hyperlink Index

5 5	DfRSoft Hyperlink Menu	
D	Prop Down Open Style Hyperlink Subject M	enu
Reliability Tools	Quality Tools	Engineering Tools
How To Use This Hyperlink Menu	Physics of Failure Library	Hints and Problems
To Welcome Page	,	To Welcome Page
	RELIABILITY TOOLS	Back
2 & 3 Reliability Plotting & Dist. Shapes	5 Statistical Distributions	7 Acceleration Factors
Comment on Module 2 Versus Module 3	Weibull Failure Rate Analysis (A48)	ACCELERATION MODELS & FACTORS (VIDEO 10 Min.)
Module 2: REL PLTS & Module 3: S-REL PLTS VIDEO (10 Min)	Lognormal Failure Rate Analysis (A79)	Arrhenius Temp Accel Model (A10)
2 Reliability Plotting (Suspensions End of Test Option)	Exponential Distribution A8)	Temp-Cycle Accel Model (A42)
3 Reliability Plotting (Suspensions any time Option)	Chi Sq & Std Limits Conf. Life Sampling (A36)	Temp-Humidity Accel Model (A27)
Weibull MLE Plotting Results (N7)	Binomial, Normal, Beta Conf. Limits For Life Sampling (Vibration Accel Model (A57)
Weibull Regression Results (T4)	Poisson Probability (A129)	Mod
Three-Parameter Weibull Analysis (AW4)	Normal Distribution (A23)	Uiele Hyperlink Index
Lognormal Regression Results (AA4)	Interference Two Normal Distribution. (J23)	
Normal Regression Results (AL4)	Binomial Trials (A163)	Нот Сантен пуссион мочен (АZTT)
Exponential Regression Results (AG4)	Testing Two Proportions (A142)	
Mixed Modal Analysis (K6)	Weibull - Num. of Units Expected to Fail (A109)	Arrhenius Least Squares Fit for Act. Energy (A99)
MIXED MODES ANALYSIS VIDEO (10 Min)	Lognormal Confidence About the Mean (A99)	Power Law Least Squares Fit (A157)
Bayesian Weibull & Lognormal (N1-AB1)	Weibull Confidence (A68)	Arrhenius Lifetime Model (A210)
FIELD RETURNS USING S-REL PLTS. VIDEO (10 Min.)	Bayes Method for Prod. Test	Chi Sq. Est for Qual Failures (JESD47-A) (A294)
2 Distribution Shapes (A78)		Handy Temp Conversion (A72)
Comment on Distribution Shapes	6 Returns	Moisture Diffusion Time Through ICs (A240)
Two or Three Parameter Weibull Shape Dist. (A115)	FIELD RETURING MTBF INSTRUCTIONAL VIDEO (10 Min.)	Power Law Lifetime Model (G210)
Exponential Distribution Shape Plots (A78)	Field Return, Pata Entry & Results (A14)	Temp Accel: Doubles Every 10C (A286)
Lognormal Distribution Shape Plots (A155)	Field Return Res. 19	Capacitor Acceleration & Lifetime Model
Normal Distribution Shape Plots (A195)	AFR & B Lite Calc. (K. 1	0. The stall set of the state o
	Field Return Calculator (A. 14)	8 Test Plans Chi-Squared Method (Binomial Exact Option)
4 System Reliability	Weibull Macro	ACCELERATED TEST PLANNING (10 Min. Video) ALSO SEE ENV. PROFILING (25 Min.)
SYSTEM RELIABILITY INSTRUCTIONAL VIDEO (10 Min.)	Weibull Input (AH18)	Chi Sa Life Test Time Estimate (M10)
System Level Serial Block Diag. (A30)		link to Videoo Evoloining Toolo
Redundancy	9 Environmental Profiling & Ste	m k to videos Explaining tools
Two Items In Parallel (A16)	What is Environmental Profiling Commentation	
Three Items in Parallel (E16)	ENVIRONMENTAL PROFILING & ALT VIDEO (25 Min.)	Chi Sq Failure Rate Device Hours (Q11)
N of K Cal. with & without Repair (I16)	Environmental Temp. Profiling (A8)	Chi Sq Confidence Changing (U9)
2 Units with Switch (Y10-AA24)	Envis mental Temp. Cycle Profiling (18)	Chi Sq Estimate Device Hours, FITs, MTBF (A117)
Active & Standby with imperfect switch (T2-X26)	Environmenta, Comp-Humidity Profiling (Z8)	Schedule Planning Tool (M25)
Standbys & Actives Parallel Units (016-W26)	Environmental Vibration, Statiling R8)	Multiple Chi-Sq Fail Rate Plan Plots w/Temp (A79)
I wo Active On Line Units Different FRs (O6)	Temperature Step Stress Correct. 7460)	loct Any Tool & Hyporlink to It
MTTF Chi-Square Conf. (A139)	10 Accelerated 'Rel. Growth' & HALT	
▶ ₩ INDEX & Lic Ag. Menu Index / HINTS / 1 Conversion	s 2 Rel Pits 3 S-Rel Pits 4 System Reliability 5 Dist & Co	onf. 6 Field Returns 7 Acceleration Factors 8 Test Plan 9 Env Profiling 1
au 🖳		

DfRSoft...

page 5 / March 27, 2015

Why DfRSoft Users Never Call Us for Questions on Software Help

- Our Pop-up Instructions and Videos are so complete and helpful, our phone.....
 - Never,
 - Ever,
 - Ever rings!!!

Conversion Worksheet

Example: How to use DfRSoft:

DfRSoft...

Hyperlink Index for Conversion worksheet

											v		
	A	В	C	D	E	F		G	Н	I.	J	K	
1				SELECTED CO	ONVERSIONS								
2			EN	TER INPUTS	IN GREEN AR	EAS							
3	HYPERLINK INDEX:			DfRSoft 3.03	320 (DFRSOFT.CO	M) (It is illeg	gal to copy & u	se this s	software without a lega	al purchase.)			
4	Failure Rate Conv Exp. N	tribution	Power Conversion d	Bm ∢-> Watts		Volume Co	nversion		Time - Hrs Minutes S	Seconds Weeks	Temp At Die Surface	Calculator	
5	Temperature Conversion		Voltage to Provin	De Conversion		Deserver			Date & Time Test Co	de a alerta	American Mine Course	(AUD) () (ALL OUD	
6	Length Conversion		dB & Ins Los				/ 1		• •		_		
7	Energy & Work & Torque		Mass Conv	wave	-nte	rv	้วแม	e	s in (Freer	Areas	read ans	Mers
8		FAI	LURE RATE	ways I		I V	aid				1/1003		
9		ENTER	RESULTS	HESULIS	RESULTS	HESUL	IS RES	ULIS	RESULTS	Hesults	Hesuits	Hesuits	
10	QUANTITY TO	QUANTITY	FITs	MTBF	Failures per	Failures	per Relia	bility	1-Reliability	PPM	PPM	AFR	
11	ENTER	VALUE		Hours	Million Hours	Hour	ati	ime	At Time	at	per Year	Annul. Fail	
12	100000000000000000000000000000000000000	100		0.3473547557		0-0-0-000	730	Hrs.	730 Hrs.	730 Hrs.	(8760 Hrs.)	Rate	
13	FITs	8883	8883	112574.5807	8.883	0.000008	883 0.993	53639	0.646361%	6463 610419	74864 51322	7 486451%	
14	MTBF (Hrs.)	35000	28571.42857	35000	28.57142857	2.85714				w	found		.
15	Fail Per Million Hrs.	1000	1000000	1000	1000	0.00	FUI		UP INSU	ructions	i ouna r	lear mos	ι
16	Failures per Hour	0.0001	100000	10000	100	0.000	Taal	~				molo	
17	RELIABILITY	0.99	13767.58336	72634.38861	13.76758336	1.37676	1001	<u>s</u> –	- Slide C	urser o	ver Exar	npie,	
18	at Time (Hours)	730					Com		opt or L		whet alight	9 aglact	adit
19			1. Comment 20	Upprotocted	Mark Area	have in C	COL	ш	ent or F	ιειρ. κι	JUL CHCK	α select	ean
20	EXAMPLE	P12 volue	1: Convert 20	UU FIIS LO M	TBF Value, En	iter in C	Com		ont to m		ound or	odd your	0110
21		Hours	2000, Teau et	uivalent mit	or in cell Di-		COL	ш	ent to n	love and	Juna or	add your	OWH
22		liouis					oom	m	onto				
23		EXAMPLE	2: What is the	reliability an	d PPM rate a	t 8760	COILI	1116	51115				
24		hours for	2000 FITs Ent	er in Cell B13	, 2000, Ente	r in Cell	B18,						
25		8760. Re	ad reliability of	0.982633 in	Cell G13 and	I PPM of	E .						
26		17367 in	Cell I13 Check	Enter 0.982	633 in Cell B	17, Read	d						
27	QUANTITY	2000 FITS	s in Cell C17 an	d 17367 in C	ell 117.					↑			
28			-		-								
29	CENTIGRADE	250	>	250	482	523.15	;			•			
30	FAHRENHEIT	150	>	65.55555556	150	338.7055	556		WOSt wh	ite areas	s are unp	rotected	
31	KELVIN	341.48	>	68.33	154.994	341.48)		Forvour	notoc			
32			10; S	2	-		26		FOI your	notes			
33		L	ength Conversion	n									
34	an and a second second	ENTER		RESULTS	RESULTS	RESUL	TS RES	ULTS	RESULTS	RESULTS	RESULTS	RESULTS	
•	♦ ► ► ► \ INDEX & Lic	Ag. (HINTS)	Conversions / (Cpk / Acceler	ation Factors	/ Test Pl	lan 🖌 Dist	& Con	if. / Rel Plts / S	S-Rel Plts / Sy	stem Reliability 🔇		

Current Conversion Worksheet

page 7 / March 27, 2015

All Reliability Plots displayed next to each other

Assess best fit Weibull, Lognormal, Exponential, Normal Both Weibull Regression on X or Y and MLE (Maximum Likelihood Estimation)

DfRSoft...

page 9 / March 27, 2015

Reliability Plotting Analysis with <u>Best</u> <u>Predictor</u>

Quick analysis section to determine reliability at any time. For a full analysis use the distribution and confidence analysis area"

								4
Optional Reliability Prediction Time			MLE Weibull	Weibull	Lognormal	Exponential	Normal	3-Param
ENT	ER		Prediction	Prediction	Prediction	Prediction	Prediction	Weibull
Enter Reliability 0< R	<1 0.85	Time rrx>	690.5746719	468.4774143	488.9642878	217.3037259	383.3759403	469.9514401
Confide	nce	Upper Time	928.7094774	817.4654089	523.0080496	350.8316097	471.087964	
Entered	Above Plots	Lower Time	496.9905899	243.846064	428.4619475	134.5970773	211.2453228	
Enter Time of Interes	Enter Time of Interest 260			0.93354051	0.96594295	0.823286538	0.875857136	#NUM!
Confide	nce	Upper Prob	0.990385642	0.982289474	0.963501241	0.886528351	0.887194289	
Entered	Above Plots	Lower Prob	0.941855279	0.839895244	0.956337866	0.730565492	0.837935563	
BEST PREDICTOR SECT	ION Predictor Commen	t	Weibull MLE	Weibull Reg	Lognormal Reg	Exponential Reg	Normal Reg.	3-Param Weibull
Best Predictor Analysis for Median P	lot Position		96.67450%	97.04189%	96.64243%	97.41469%	96.88096%	97.24427%
Rank of Predictor for Median Plot Po	sition		5	3	6	1	4	2
Rank by Regression Rho values			NA	96.39377%	96.24409%	94.42535%	95.96018%	98.01312%
Rank by Linear Regression Goodness	of Fit			2	3	5	4	1

Best Predictor Ranks which distribution Best Fits the data (two methods)

DfRSoft...

page 10 / March 27, 2015

View Plots for Any Basic Distribution Over Any Time Period.

Instructions: To view the Veibull distribution for any time period, enter the Characteristil Life (Alpha) in Cell C90 and the Shape parameter (Beta) in Cell C91. If there is a time delay (gamma) enter in Cell C92. Then enter the time period of interest. For example, between 6 and 12 months, enter 4380 for plot star time in Cell C93 and 8760 in Cell C94 time, period of interest. For example,

Software provides capability to look at the any common distribution. For given parameters. For example if you find the beta and characteristic Life, from reliability plotting then you can enter these here and look at the PDF, CDF, Hazard rate, and reliability over any time period.

page 11 / March 27, 2015

Mixed Modes: Capability to separate out as many modes as can be observed

Bimodal Results with Inflection Point at 43%

Weibull Bimodal Regression Results													
Uppper Distribution (From 43% to 100%) Results													
Beta 1 Char Life 1 MTBF 1 Intercept 1 Statistical													
	(63.2% failure)	Expectation	(not gamma)	Rho 1									
5.93303 185.4309608 171.920827 5.22268263 0.995162													
	Lower Distribution (From 0 to 43%) I	Results										
Beta 2	Char Life 2	MTBF 2	Intercept 2	Statistical									
	(63.2% failure)	Expectation	(not gamma)	Rho 2									
3.97207	71.69381364	64.9575911	4.27240446	0.957									

This Analysis Can be Extended to all Distribution Including MLE and Weibull. As Well the User can Extend this Bimodal Analysis to Multiple Modal Analysis. Please review the Instructions & Video below to learn how.

DfRSoft...

page 12 / March 27, 2015

Distribution & Confidence Page Full Analysis of Any Key Distribution

	A	В	С	ĺ	D	E	F	G	Н	1	J	H-H
48		33									8	
49	Example: 100 devices are tested	and 1 failure is obs	erved, what is ths upper a	and lower	Chi-square and Stand	lard Limits 90% confidenc	e bounds for the failure 🕽	%? Enter 1 in Cell B44	, 90 in Cell B45, 2 for	2 sided estimate		
50	in Cell B46, and 100 in cell B47.	Read the upper and	d lower bounds in Cells E	44 & G44	and D44&F44 (i.e. Ch	i Square is 4.74% and 0.05	i13%). Note these bound	s are about the 1% (1 f	ail of 100) failure poin	t estimate cell C44.	6 0	
51							0	3				
52			VEIBULL FAILURE	RATE	ANALYSIS							
53		ENTER			RESULTS	RESULTS	RESULTS	RESULTS	RESULTS	RESULTS	MTTF	
54	QUANTITY TO			Fr	action Failing	Estimate			HAZARD	CUM		
55	ENTER	QUANTITY			CDF	Characteristic	Beta	Reliability	FAIL RATE	FAIL RATE		
56		VALUE	NOTES	3	at 672 HRs	Life			At Time Entered	At Time Entered		
57	Analysis For finding F		Characteristic					1	125.46360	86.97174		1
58	Characteristic Life	5.00E+03	Life is Similar To		0.058445011	5,000.00000		0.941555	Per 10^6 hours	Per 10^6 hours	3848.344	
59	Beta	1.4	MTBF, it represents		5.844501%	08	1.40000		125,463.598262392	86971.743		
60	Time t of Frac Failure	672	time to 63.2% Failure					1	Above in FITs	Above in FITs		
61	Analysis For Char. Life								11.53	11.20000		
62	Frac Fail (enter 0 <f<1)< td=""><td>0.056</td><td>Beta values:</td><td></td><td>0.06</td><td></td><td></td><td>0.944000</td><td>Per 10^6 Hours</td><td>Per 10^6 Hours</td><td>60138.63015</td><td></td></f<1)<>	0.056	Beta values:		0.06			0.944000	Per 10^6 Hours	Per 10^6 Hours	60138.63015	
63	Time t to Frac Fail	5000	B=1 is exp dist.		5.600000%	86762		Stellow Mater	11,525.82	11,200.00		
64	Beta		B<1Infant Mort.			0.00 Million 100	1.000E+00	1 A	Above in FITs	Above in FITs	-	
65	Beta Analysis		B>1 is wear-out						5.31	6.3927		
66	Frac Fail (enter 0 <f<1)< td=""><td>0.056</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>IS</td><td>Per 10^6 Hours</td><td>190557.344</td><td></td></f<1)<>	0.056						•	IS	Per 10^6 Hours	190557.344	
67	Time to Frac Fail	8760	Keep time unit same		All the	commo	on distrik	nutions	&	6,392.69		
68	Charc Life	300000	as Char Life						S	Above in FITs		
69	Weibull Temperature H	yperlink			Confic	lences c	an he fo	hund for	r 🗆			
70	Example: If the Weibull character	istic life is 400,00 h	ours and Phans 2.5, wh	at is the c	Conne							
71	in Cell B60. Read 0.0222 in Cell	D58 or 2.2% in Cell	PLS. Note the reliability	is 0.9778	any na	ramotor	t at any t	tima H		of bathtub curve, 1<	Beta < 4 mild w	earout k
72					any pe	arameter	atany	une. H			10	
73	Veibull Confidence				ic a M	oibull on						
74	ENTER	ENTER	ENTER		15 a VV	CIDUII al	aiysis.		er	1-Sided Lower	1 Sided	1 Si
75	Number	Prediction	Characteristic		Beta	Confidence	Bound	Bound	Bound Failure	Bound Failure	Upper	Low
76	Tested	Time	Life (Eta)			×	Reliability	Reliability	Rate in FITs	Rate in FITs	Time	Tii
77	254	750	883		4.11	90	5.5602E-01	6.4066E-01	3.2165E+06	2.4400E+06	7.8407E+02	7.174
78	17	16	8.8		4.11	90	1.1568E-15	1.9054E-02	8.8347E+09	1.0173E+09	2.2649E+01	1.130:
79												
80	Use this predictor to estimate th	e upper and lower t	bounds on the failure rate	e and relia	ability, Example: 25 Sar	mples are accelerated life	tested, Prediction at use	e are Eta 100,000. Bet	a 184.			
81	Determine the 1-sided 90% confi	dence bounds on F	R and the failure rate at 10),000 hou	rs. Enter 25 Cell A77.	10,000 cel B77, 100000 in d	ell C77, 1.84 in cell D77.	and 90 in cell E77.				
82	Read 1-sided results 0.9352 < R	0.99688 cells F ar	nd G77. and 574 FITs < F	ailure Rat	te < 12.323 FITs Cells I	H and 177.						~
H 4	INDEX & Lic Ag	. / HINTS /	Conversions / Cp	k/ Ac	cceleration Facto	ors / Test Plan / D	ist & Conf. / Re	l Pits / S-Rel Pit	ts / System R	eliability < 🗌	101	

DfRSoft...

Distributions & Confidence Page

March 27, 2015

Benchmark Information on Reliability Plotting in DfRSoft

- DfRSoft Reliability Plotting tool has been benchmarked with other industry standards like Weibull++. DfRSoft results are statistically identical in plotting position and distribution results.
- DfRSoft has superior graphic options (same as Excel)
- Our analysis methods are more complete with multiple tools
- Ease to replot any distribution over any time period
- Excellent Confidence analysis and Best Predictors
- Mixed Mode Analysis
- Weibull-Bayesian: "WeiBayes" analysis

System Reliability

Block Diagram Sub & System Level Analysis

Dender.

Cut & Paste Block Diagram Results into Power Point for Presentations & Reports

DfRSoft...

page 17 / March 27, 2015

System Reliability – Redundancy Analysis

DfRSoft...

page 18 / March 27, 2015

Chi-Square Test Planning

DfRSoft...

Test Plan Work Sheet

Chi-Square Multi-Test Planning

Acceleration Factor Tools

Acceleration Factor Page

DfRSoft...

page 21 / March 27, 2015

Arrhenius Plotting

Activation Energy and model values

	A	В	C	D	E	F	ji	Н	-	
97										1
98		OT COMADES FIT AN						for the strengthene Process safet	Theorem	
99	ARRHENIUS LEA	ST SQUARES HI AN	ALYSIS FOR ACT	VATION ENERGY OF 2	2 TO 20 POINTS	Desults	Moriel Z: Least Square Fit	For Activation Energy with	Fime to Fa	
100	Comment	ENTER	Failure Limes	Hesuits	MILLE Estrapolation 1	Activation Ex	Coloris D+EarKBrit of H	all Hate (Intrj=Ki Exp(-Ea	KB(I)	
101	2 to 20 parameter	remperature	MITE	Loost Sa	Tomporature	Activation Ea	Ea = Is the Activation Ener	gy (in ev - electron volts)		
102	least squares fit	Deg C	141111	Eeast Sq Eit (MTTE)	At 40 C	and K1	to Mean time to Eailure (M	Served ITTE)		
10.5	Make sure ann extra	85	70	41 36 350 994	1229 324603	Activation	KB- Boltzmann's Constan	11117) xt (0.00008617 e\//Deg.K		
105	temperature cells	85	66.8	41.36350994	1173,126907	Energy (eV)	C= Arrhenius intercent (au	tomaticallu calculated for extrap	olated data)	
106	are left blank.	125	5	5.57842671	651.0947452		K1= Exp(-C), Arrhenius Cor	nstant (note:RELEX - K Factor)		
107	>	125	4.97	5.57842671	647.1881767	0.615453798				
108		150	1.75	1.932997034	657.6469019	D	83			ł
109		150	1	1.932997034	375.7982296	-16.21986244				
110		150	1.25	1.932997034	469.747787	1		02		
111		27	800	1950.763663	297.9005104	K1 is				
112		30	800	1541.467881	377.0000645	1.1071E+07				
113		28		loost 0 o	r 2 mainta					
114	3	200	inter at	least 2 0	r 3 points	,				
115	1	450 +	omporo	turo and	Egiluro ti	moo				
116		1	empera	lure and	railule III	nes.	nius Least Squares	Fit with Data (Serie	es 1) & F	
117		35	-21							
118		50	8(100000 -						
119		Entor	othor to	moorotur	roo of					
120		Enter		mperatur	62.01					
121		intoro	et to find	Inrojacto					100	
122				i projecie						
123	Extrapolation	ENTER	5							
124	Besult of Least	Temper dure	E	1	1.22					
126	Sg. Fit Above	Leg C	Ĕ	0.1	0.5	1	1.5	2.5		
127	Extrap Temperature 1	40	F	0.01						
128	Extrap Temperature 2	25	· ·	0.001						
129	EXAMPLE: What is the activation en	nergy of the following life	test data at	0.0001						
130	Enter from hi to low 250, 225, 200, 17	75 in cells B110, 111, 112, 113.	Enter MTTI	0.00001						*
			Factors / Test D	an / Dist & Conf	Rol Dite / S-Rol Dit	s / System Re	liability / Vibration & Sh	k / Field		1
	A NA CONVENSIONS & CE	Acceleration	actors A rest P		V NELENG X SHOELEN	S A System Ke				

Acceleration Factor Page

DfRSoft...

Reliability Growth – Multi-Test Capability

(Assess your products growth as you find and fix failure modes)

DfRSoft...

Reliability Growth Page

page 23 / March 27, 2015

Chi Sq Reliability Growth - Multi-Test Assessment

Using Chi-Square Method Instead of Duane. DfRSoft is the inventor of this method. It is easier to use than Crowe/AMSAA has multi-test advantages – more practical!

A B C D E F G H I J K need to convert cycles to field hours. For example 1 cycle typically equals 24 hours in the field. Thus 10 cycles enter 240 hours for the test time. If you have a test like drop shock, you can estimate an acceleration factor. For example, you might acceleration factor. Enter the Chi-square confidence in percent in cell B178 (i.e. 90 for 90%). Reliability growth occurs when you fix failure modes. For each failure, estimate the fix effectiveness of your fix. For example, if you are certain you fixed problems. In column I you can enter optional information about the fix description. Reliability growth results are provided in Graphs and in the tables. Tabular results are in columns J through R. With plot summary in columns T-AB. Reliability growth delow and far to the right for each test and graphs for "All Test Reliability Growth Summary" in the fixed for the test test and graphs for "All Test Reliability growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test Reliability Growth Summary" in the fight for each test and graphs for "All Test

23

Field Returns is convenient and simple to use with two methods available

	A	в	С	D	E	F	G	Fir	st I eve	I Anal	vsis is a	available	- haser	lon			
1							FIELD RET	TURN									
2	METHOD 1:	Averages			DfRSoft	3.03309 (DEDCC	Checowy (It is illeg	al to aV	erages	of Iter	ms ship	ped per	year -				
3	Simplified	Method	to Assess a F	ailure Mo	ode of Field	d Failure Ra	te Based on	Ave Nu	mboro	f failu	roc obc	orvod ir					
4	Field Data In	formation		Enter	Results	Result	Frac Fail/Year			Tallu	162 002	erveu ir	Ia				
5					Average days	Fail Rate	MTBF	rea	asonabl	e time	e period	s Here	vou ca	n			
6	Avgerage Nu	mber Units	Ship Per Year	352	Per Failure	1.37755E-05	72592.66667						you ou				
7	Num. of Obse	erved Failu	es or returns	48	412.4583333	per hr	E=1-B	Es	timate	orodu	ct MTBI	- of failu	ure mod	de			
8	Total Days (s	sum of days	to fail for	19798	Aprox Num	Frac. Fail	11.367657%	D 47									
9	each failure)				Fail Per Year	Per Year	F=FR*8760		BF.								
10	Duty Cycle: D	ays Oppora	ting per Year	365	42.47701788	0.120673346	12.067335%	2									
11	Instructions)															
12																	
13	METHOD 2:	Enter By N	lonth					-									
14	FULL FIELD	DATA AN	ALYSIS BY N	IONTH			_	IMPORTAN	T IN SRUCTIO	IS				-			
15	Enter Numb	er Operatir	ng nours Per	Year (Hour	s Per Year x	Duty Cycle)		8760	For example	: Enter 8760	hours per yea	r, for 100% duty	y cycle, 4380 ho	ours for 5			
16	Enter 1 if ite	ms are rep	aired and ou	t back in th	ne field and 2	2 if removed	permanently	1	1				6765 <u>-</u> 670A				
17	Caution: Allo	ow Only On	e Entry Per N	ionth, Need	d at least 1 fa	ailure for res	ults (Col D). Ca	alculation st	ops when nur	nber sold ir	n field 'C' is left	blank, Do not e	enter 0.				
18			an 200		i ii		HYPERLINK TO	ALL PLOTS				FIELD DA	TA RESULTS				
19	Ship Date	Months	Offset Delay	Number	Number	Fail Code	Cum. Devices	Device	Device Hrs	Cum	Instaneous	Inst w/Offset	Inst.	Avg. M			
20	Enter First Date	-	in Months	Units Sold	Fail	Optional	Survive	Hrs	Vith Offset	Fail	Fail/Hr	Fail/Hr	PPM/YB	Vith Of			
21	03/02/06	10	0	1	0		1	730	730	0	1.67452E-05	2.09044E-05	146687.6972	47836.8			
22	4/1/2006	2.0		13	5		14	10.9 0	10.950	5	FITs	FITs	PPM/YR	Avg M			
23	5/1/2006	3.0	0	1V-		nth hy	Month	dothil	ad Law	al Ana	lveie ie	hased (n	0% C			
24	6/1/2006	4.0	0	18		пштбу	WOITUI	ucian			19313-13	Daseu		777.2			
25	7/1/2006	5.0	4	17	Iter	ns shi	oped ar	nd leti	irned e	ach m	nonth. S	oftware		vg M			
26	8/1/2006	6.0	4	0				120						0% C			
27	8/31/2006	7.0	4	21		ows toi	cduty c	ycle, i	epairs	or nor	n repairs	S. >		880.7			
28	9/30/2006	8.0	4	-26					ر سامحانی نو			1					
29	10/31/2006	9.0	4	14	E Fai	iure co	de opt	ons to	neip p	errorr	n what	11					
30	11/30/2006	10.0	4	59		anario		ontio	ally m	onthly	offecte	can bo	ontoro	1 000			
31	12/31/2006	11.0	4	13			5. 130,	option	any m	Jinny	0113013	can be	enteret				
32	1/30/2007	12.0	4	41	to k	noln ca	nturo v	vhon i	tom is a	actual	ly instal	bal					
22	P. 10101 (12) - 107 Parts	10,000															
33	3/2/2007	13.0	4 ration Eactor	42 5 / Tost I			ipiule v			locual	iy mota	icu.					

DfRSoft...

page 25 / March 27, 2015

Field Returns Analysis – simple entry form with many options – graphical

DfRSoft...

page 26 / March 27, 2015

DfRSoft...

217PRED PAGE

page 27 / March 27, 2015

DfR MISC Tools – Numerous tools to assess needed physical situations. Dielectric breakdown example below.

60	Notes:		-	* leave blank or 0 to use	default	HANDY DISTANCE CON	IVERSION HELP	1	1 <u></u>
61	** Typically results no	ot valid be	low 5 microns			Distance	Distance	Distance Conversion	
62	Breakdown varies wit	h pressur	e, For other pr	essures use Paschen's la	aw below.	Units	Input 1	To CM for Reference	
63	Company of the second					Distance in CM	100	100	
64	PASCHEN LAW - Vo	Itage Br	eakdown in A	Air at Any Pressure		Distance in Meters	1	100	
65	Enter	2	Enter	Breakdown Voltage		Distance in Nanometer	20	0.000002	
66	Distance in Meters		1.00E+00	Volts/Meter		Distance in inches	39.37	99.9998	
67	Pressure in Atmosph	eres	8.10E-01	2805244.056		Distance in microns	1000000	100	
68						Distance in Anostroms	1000	0.00001	1
69		and a second		3		ielectric Brea	akdown ar	nv –	
70	BREAKDOWN IN A	SOLID DI	ELECTRIC					.,	Unpro
71	Distance		Distance	Enter Breakdown	Breakdow pr	essure Pash	en's Law		
72	Units		Input 1	Input 2	Results in Volts	Air	0.03		
73	Distance in C	M	1	in MV/cm	30000	Alumina Al203	0.016-0.06		
74	Distance in Me	ters	1	0.03	3000000	Ge 0.1			
75	Distance in Nano	meter	4.9	•	0.0147	Si Silicon	0.3		
76	Distance in incl	hes	4		304800	GaA	0.4		
77	Distance in mic	rons	1		3	FP4	~0.44-0.47		
78	Distance in Angst	troms	1500		0.45	Barium Titanate	0.6 - 0.95		
79						BCB*	2		
80		Die	electric	Breakdown	lool at	SIN	6		
81		anv	pressu	ire in air. Ha	ndv look	SICOH	8.0-9.0	_	
82						Si3N4	10		
83		up t	ables a	ivaliable for (amerent	SiO2	11		
84		mat	erialsv			Marlex HDPE	0.2		
85		mat		45 C	- 2	Low Density Polyethylene	0.19737		
86	Local Relative Hum	idity				Polyethylene PE & XLPE	.23-0.5]	
87	Quantity	1 1	Enter	Results		Polystyrene	0 197 - 0 25		
	H / Heid Keturns	X Avail 8	k Spares / Rei	Growth 7 Therm Anal 7	Skin Debth & DTR MIS	C & Derating & D-FMEA &	ESD / 21/ T&E / TS	S & NOTES 🕻 👘	>

DfRSoft...

DfR Misc Page

Design Failure Modes Effects Analysis Work Sheet

DfRSoft...

D-FMEA Excel Tool

Various Thermal Models

Find relevant tables for CTE mismatch items such as ceramic part and circuit board

Farameter	CTE PPM/C	Enter Temperature	PPM Increase	Percent Increase	
	3	Rise in Deg C	Glass-Ceramic	53.84615%	3.5
os-Ceramic 🛛 🗸 🗸		20	60		
nina (ceramic Chip Carrier	6.5		Alumina (ceramic Chip Carrier)	CTE Factor Larger	
			130	2.166666667	
nina (ceramic Chip Carrier)					
ninum	SHEAR ST	BESS ASSESSMEN	T AND FATIGU	E LIEE BISK DE SMT	PABTS (Including BGAs)
hinum (40% Silicon)	SHEATST	THE OF THE DE OFFICE	THETATIGO		Third (moraling barrs)
ninum Nitride ninum, T6061	leutral (or P	arts Middle) Point i	n Meters		
11-	In CM	Results (Meters)	In Inches	Results (Meters)	
na (Super BGA)	4	0.025	0.393700787	0.007071061	
Alumina Ceramic (CBGA)	3		0.3937		-E
on Aluminum (20%)		-			
ia Notes	actimates may	he obtained in tour CC at	drau 69		
kesign oon steel	sumates mai	, de obtained in row 66 ar	1010w60		Den la DOA de la 500 million
crete	licrons, exampl	e hip chips about 75 to 1	JU microns, packagi	ed hip chip (CSP) 250 micr	rons, Regular BGA about 500 microns
per per Mo/Coper	C-SM-785 She	ar Stress)	1		
per, CDA 101	ENTER	Shear Stress %		Risk Assessment	Relative Risk For
perrinvarrooper ic Boron nitride Shear	400	7.031250%		Shear Stress %	Device in Field
iond Jos Epozy Short	0.025	ACTE Mismatch		∆100C Shear Stress	Mild Environment
ass	.14	7.5 PPM/C		4.687500%	At Risk
iss/Poly Shear ass/PTEE Shear	6.5	Dimension Change		Enter Risk Criteria %	Harsh Environment
	150	2.8125E-05		1	At High Risk
xy (201: 011	u 1	Underfill 5 to 8		Recommend 1%	
xy xy (70% Silica) Plastic Lack xy 84-1 Ablestick (silve filled condi		shear stress is a keu para	ameter for solder fai	ique, Per IPC-SM-785. sk	near stress is calculated. In the above entries.
ky ky (70% Silica) Plastic nack ky 84-1 Ablestick (silva, filled condi ky E-glass Fibers ky Elosso Robuinid-altas	atch exist than :				nint (See Step 1 to) CTE mis match is between the part
ky ky (70% Silica) Plastic, lack ky 84-1 Ablestick (silva filled cond ky E-glass Fibers ky Glass or Polyimid-glass	atch exist than :		er joint as the max d	istance from the center no	JUC TOEE OCED FLOT, O FE HIIS HIGGINIS DECREEN CHE DAM
yy cy (70% Silica) Plastic ack cy 84-1 Ablestick (silva filled cond cy E-glass Fibers cy Glass or Polyimid-glass	atch exist than :	OTE	er joint as the max d id row 38 to row 42	Istance from the center po	the test. Finally, if the part has underfill/cornerfill this reduces

Field Returns / Avail & Spares / Rel Growth) Thern Anal / Skin Depth / DfR MISC / Derating / D-FMEA / ESD / 217 T&E / TSS / Notes

DfRSoft...

Therm Anal Work Sheet

Vibration & Shock Tools

RV Grms and Disp for Resonance		D		a Sine	vidratio	n Conve	rsion	lana (a. O'a a
		Packaging Foam Thi	ckness Guilland for					pom to sine
	SIN	E VIBRATION CONVERS						
	ENTER	ENTER	RESULTS	RESULTS	RESULTS	RESULTS	RESULTS	RESULTS
QUANTITY	QUANTITY	FREQUENCY	VELUCITY	ACCELERATION	ACCELERATION	DISPLACEMENT	PSD	PSU
	VALUE	Hz	InrSec		Meters/Sec2			A ZrHZJ=M Zrsec 3
/ELUCITY (In/Sec.)	651		501	848.2084691	8312.442997	2090.240642	NA LOF	NA 100.05
*k ACCELERATION (Gs)	10	80	1.675	10	38	30.5625	1.25	120.05
)ISPLCMNT (mils) Pk-Pk	7.818		1.964882304				NA	NA 0.0440
75D (G ZrHz)	0.04		NA	Entor Er		vd.	0.04	3.0410
AMPLE				Enter Fr	equency an	iu		
				paramete	r to conver	t	I ED ANEA	
	00	NSTANT ACCELEDATI	ION	paramoto		·		
	ENTER	ENTER	BESULTS	BESHI TS	1	EQUATIONS	Definitions	Conversion
QUANTITY	QUANTITY	BADIUS	BEV/MINUTE	ACCELEDATION				Conversion
QUANTIT	VALUE	INCHES	BPM	GS		F=MA=V^2/R	f=BPN	Bin inches fin BPN
ACCELERATION (G<)	1000	3	3425,340549	1000	1	V=B 2(pie)f	G=Gs Acceleration	
	1000	•			1	A=G a	de gravitu accel	
BEV/MIN (BPM)	3425.3	3	3425 3	999 9763241		f=cart(G/IR a (2 pix)*2)]	B-radius	6-Sarb(G//2.841v10^-5)B1
	042010				1	resolution of the biol with	Ti-Tadida	readicion[commono]riff
				orce	1	Length (in Mils)	100	9.88E-05
Acceleration in Gs		Hyperlink to Weight,	Density Calculator for	pr Wire Pop	Up Ins		Besults	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs	IANICAL DROP SI	Hyperlink to Weight,	Density Calculator fo	pr Wire Pop	Up Ins ⁻		nn Results Force	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs	IANICAL DROP SI	Hyperlink to Weight, HoCK Half Sine (mks)	Density Calculator fo		Up Ins ⁻ quantity		Results Force (Newtons)	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs	IANICAL DROP SH Inputs 100	Hyperlink to Weight, HoCK Half Sine (mks) 980	Equations (mks)		Up Ins quantity Cram	Enter QUANTITY YALUE	Results Force (Newtons)	9.88E-05 1.39E-05 or for Wire materials
Receleration in Gs Acceleration in Gs EXAMPLE MECH Gs Pulse Duration D (millisec)	IANICAL DROP SI Inputs 100 11	Hyperlink to Weight, HoCK Half Sine (mks) 980 0.011	Equations (mks)	Pop		Enter QUANTITY YALUE 1 90	Results Force (Newtons) 0.0098 882	9.88E-05 1.39E-05 or for Wire materials
Receleration in Gs Acceleration in Gs EXAMPLE GS Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4)	IANICAL DROP SH Inputs 100 11 1	Hyperlink to Weight, Hyperlink to Weight, Half Sine (mks) 980 0.011 Default 1,14 Common	Equations (mks)	Pop		ENTER QUANTITY YALUE 1 90 5280	Results Force (Newtons) 0.0098 882 1466.9424	9.88E-05 1.39E-05 or for Wire materials
Receleration in Gs Acceleration in Gs EXAMPLE GS Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches)	IANICAL DROP SH Inputs 100 11 1 23.65091724	Hyperlink to Weight, Hyperlink to Weight, Half Sine (mks) 980 0.011 Default 1,1.4 Common 0.600733298	Equations (mks)	Pop rwire Pop anical S	Up Ins QUANTITY Craw Shock	ENTER QUANTITY YALUE 1 90 5280 17	100 Results Force (Newtons) 0.0098 882 1468.9424 75.56976	9.88E-05 1.39E-05 or for Wire materials
Receleration in Gs Receleration in Gs EXAMPLE GS Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches)	HANICAL DROP SH Inputs 100 11 1 23.65091724 14.5830748	Hyperlink to Weight, Hyperlink to Weight, 10CK Half Sine (mks) 980 0.011 Default 1,14 Common 0.6600733298 0.3705625	Equations (mks) Mecha DROP S	anical S	Up Ins QUANTITY Cram Shock	ENTER QUANTITY VALUE 1 90 5280 17 0.00025	100 Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches)	IANICAL DROP St Inputs 100 11 23.65091724 14.5890748 58.35629921	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1, 14 Common 0.600733298 0.3705625 1.48225	Equations (mks) Mecha DROP S	anical S	Up Ins quantity Gram hock nter Gs,	ENTER QUANTITY VALUE 1 90 5280 17 0.00025	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f. Frequency (Hz)	ANICAL DROP St Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1,14 Common 0.600733298 0.3705625 1.48225	Equations (mks) Mecha DROP S Pulse Dui	anical S HOCK: E ration find ½	Up Ins QUANTITY Cram Shock nter Gs, 2 sine	ENTER QUANTITY VALUE 1 90 5280 17 0.00025 0.00013	100 Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03	9.88E-05 1.39E-05 or for Wire materials
Receleration in Gs Receleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f. Frequency (H2) 1/2 sine Ymax (fr/sec), Impact	ANICAL DROP St Inputs 100 11 23.65091724 14.5890748 58.35629921 90.9090991 22.51562056	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1, 14 Common 0.600733298 0.3705625 1.48225 6.862761146	Equations (mks) Mecha DROP S Pulse Dur drop being	anical S HOCK: E ration find 1/	Up Ins QUANTITY Gram Cram Chock nter Gs, 2 sine	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013	100 Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03	9.88E-05 1.39E-05 or for Wire materials
Meight in Grams Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f. Frequency (H2) 1/2 sine Ymax (ft/sec), Impaot Ymax free fall (ft/sec)	ANICAL DROP SI Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091 22.51562056 11.25781028	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1.14 Common 0.600733298 0.3705625 1.48225 4.882761146 3.431380573	Equations (mks) Mecha DROP S Pulse Dur drop heig	Anical S BHOCK: E ration find 1/ ht, or triang	Up Ins quantity Cram hock nter Gs, ź sine le,	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013	100 Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03	9.88E-05 1.39E-05 or for Wire materials
Vergint in Grams Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisee) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Savtooth Drop Height H (inches) Cut off f., Frequency (H2) 1/2 sine Ymaz (ft/sec), Impaot Ymaz free fall (ft/sec)	IANICAL DROP SI Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091 22.51562056 11.25781028 IER MECHANICAL	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1,14 Common 0.600733298 0.3705625 1.49225 8.862761146 3.431380573 SHOCK	Equations (mks) Mecha DROP S Pulse Dui drop heig Sawtoot h	anical S BHOCK: E ration find 1/ ht, or triang neights.	Up Ins QUANTITY Cram Chock nter Gs, 2 sine le,	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03	9.88E-05 1.39E-05 or for Wire materials
Meight in Grams Acceleration in Gs EXAMPLE GS Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f., Frequency (H2) 1/2 sine Ymax (ft/sec), Impact Ymax free fall (ft/sec) ED SHAK 1/2 Sine ED Stoke (Pk Pk inches)	ANICAL DROP SH Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091 22.51562056 11.25781028 IER MECHANICAL 1.5125	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1,14 Common 0.600732298 0.3705625 1.49225 6.862761146 3.431380573 SHOCK Pk Velocity In/Sec ->	Equations (mks) Bensity Calculator for Mecha DROP S Pulse Dur drop heig Sawtoot h	Anical S Anical S HOCK: E ration find 1/ ht, or triang neights.	Up Ins QUANTITY Cram Cram Cram Cram Cram Cram Cram Cram	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER QUANTITY	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03 Results Acceleration	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f. Frequency (H2) 1/2 sine Ymax (ft/sec), Impact Ymax fre fall (ft/sec) ED SHAK 1/2 Sine ED Stoke (Pk Pk inches) Haversine ED Stoke (Pk Pk inches)	ANICAL DROP SH Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091 22.51562056 11.25781028 IER MECHANICAL 1.5125 1.187951618	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default,1.14 Common 0.000733298 0.3705625 1.48225 6.862761146 3.431380573 SHOCK Pk Velocitg In/Sec -> Pk Velocitg In/Sec ->	Equations (mks)	Anical S BHOCK: E ration find 1/ ht, or triang neights. CK: Obtain t	Up Ins quantity Gram hock nter Gs, ź sine le, the ED	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER QUANTITY YALUE	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03 Results Acceleration Gs	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Cut off f. Frequency (H2) 1/2 Sine Ymax (ft/sec). Impact Ymax free fall (ft/sec) ED SHAKC 1/2 Sine ED Stoke (Pk Pk inches) Triangle ED Stoke (Pk Pk inches)	ANICAL DROP SH Inputs 100 11 23.65091724 14.5890748 58.35629921 90.9090991 22.51562056 11.25781028 ILER MECHANICAL 1.5125 1.187951618 1.187951618	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1, 14 Common 0.600733298 0.3705625 1.48225 4.8862761146 3.431380573 SHOCK Pk Yelocity In/Sec -> Pk Yelocity In/Sec ->	Equations (mks) Mecha DROP S Pulse Dur drop heig Sawtoot h ED SHOC shaker Pl	Anical S Anical S HOCK: E ration find ½ ht, or triang heights. CK: Obtain t Area bisplay	Up Ins quantity Craw Shock nter Gs, 2 sine le, the ED cement	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER QUANTITY YALUE 0	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03 Results 0.32231	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Savtooth Drop Height H (inches) Cut off f, Frequency (Hz) 1/2 sine Ymaz (ft/sec), Impact Ymaz free fall (ft/sec) ED SHAK 1/2 Sine ED Stoke (Pk Pk inches) Triangle ED Stoke (Pk Pk inches) Triangle ED Stoke (Pk Pk inches) P Savtooth ED Stoke (Pk Pk inches)	ANICAL DROP SH Inputs 100 11 23.65091724 14.5890748 58.35629921 90.90909091 22.51562056 11.25781028 30.25781028 11.187951618 1.187951618 0.792126139	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1, 14 Common 0.600733298 0.3705625 1.48225 6.862761146 3.431380573 SHOCK Pk Velocity In/Sec -> Pk Velocity In/Sec -> Pk Velocity In/Sec ->	Equations (mks) Mecha DROP S Pulse Dur drop heig Sawtoot h ED SHOC shaker Ph	Anical S Anical S HOCK: E ration find ½ ht, or triang heights. CK: Obtain t c-Pk Displac	Up Ins QUANTITY Craw Shock nter Gs, 2 sine le, the ED cement	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER QUANTITY YALUE 0 6.71	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03 Results 0.99231 Accel in M/Sec [*]	9.88E-05 1.39E-05 or for Wire materials
Acceleration in Gs Acceleration in Gs EXAMPLE Gs Pulse Duration D (millisec) Cal Rebound Factor (Default 1.4) 1/2 Sine Drop Height H (inches) Triangle Drop Height H (inches) Sawtooth Drop Height H (inches) Cut off f., Frequency (H2) 1/2 sine Ymax (ft/sec), Impact Ymax free fall (ft/sec) ED SHAKK 1/2 Sine ED Stoke (Pk Pk inches) Haversine ED Stoke (Pk Pk inches) Triangle ED Stoke (Pk Pk inches) P Sawtooth ED Stoke (Pk Pk inches) P Sawtooth ED Stoke (Pk Pk inches)	ANICAL DROP SI Inputs 100 11 23.65091724 14.5830748 58.35629921 90.90909091 22.51562056 11.25781028 ER MECHANICAL 1.5125 1.187951618 0.792126139 1.583777097	Hyperlink to Weight, Hyperlink to Weight, 980 0.011 Default 1,14 Common 0.600733298 0.3705625 1.48225 4.882761146 3.431380573 SHOCK Pk Yelocity In/Sec -> Pk Yelocity In/Sec -> Pk Yelocity In/Sec -> Pk Yelocity In/Sec ->	Equations (mks) Mecha DROP S Pulse Dur drop heig Sawtoot h ED SHOC shaker Pl and Veloc	Anical S Anical S Anical S ADOCK: E ration find ½ ht, or triang neights. CK: Obtain t c-Pk Displac city	Up Ins quantity Gram Cram Chock nter Gs, 2 sine le, the ED cement	ENTER QUANTITY YALUE 1 90 5280 17 0.00025 0.000013 ENTER QUANTITY YALUE 0 6.71 0.69	Inn Results Force (Newtons) 0.0098 882 1466.9424 75.56976 2.22264 Results in Grams 1.33E-03 Results Acceleration Gs 0.99201 Accel in M/Sec ² 9.724637681	9.88E-05 1.39E-05 or for Wire materials

DfRSoft...

Vibration & Shock Page

Vibration & Shock Page PSD Analysis

PSD Analysis, Obtain specta, Grms content, Max displacement and Max velocity

Lot Sampling – Made easy with video instructions and multiple examples

SPC Quality X bar, R Charts

DfRSoft...

page 34 / March 27, 2015

Quality - Normal Distribution Analysis

Evaluate arbitrary points in distribution.

Change confidence level to estimate mean and std. dev. Confidence bounds.

DfRSoft...

page 35 / March 27, 2015

DOE : Design of Experiments with Multiple Regression Analysis

2 DOE For 4 Factors and 2 Levels, This is 1/2 Factorial Factorial Design (8 Runs) (A full factorial would require 16 Runs)

~~				
94	Enter 4 Factors	and 2 Leve	ls	
95	Enter Factor	Factor	Enter Lo	Enter Hi
96	Name	Letter	Setting	Setting
97	Current	A	3	5
8	Voltage	в	100	200
99	Pwr Density	С	4	5
00	Speed	D	15	25
01	Instructions			

• Numerous Arrays Available, Simple Data Entry

)3	Factor Assignment																			
)4				Main Effects			Interactions			Enter Measurement Response Results (up to 8 replication runs)										
)5	Bun	Enter Run	Current	Voltage	Per Density	Speed	E	F	G	Enter	Enter	Enter	Enter	Enter	Enter	Enter	Enter	Results		Signal to
)6	Num.	Order	A	В	C	D	E=AB	F=AC	G=AD	Results 1	Results 2	Results 3	Results 4	Results 5	Results 6	Results 7	Results 8	AVE	Std.Dev.	Naire (S/N)
)7	1		3	100	4	15	•	+	+	21.317	21.4							21.3585	0.05869	2.56100765
)8	2		5	100	4	25	•	-	•	15.833	15.9							15.8665	0.04738	2.52492133
)9	3		3	200	4	25	•	+	•	10.367	10.4							10.3835	0.02333	2.64834483
0	4		5	200	4	15	+	-	-	20.75	20.8							20.775	0.03536	2.76908603
1	5		3	100	5	25	•	-	•	23.967	23.9							23.9335	0.04738	2.70344641
2	6		5	100	5	15	•	+	•	20.2	20.3							20.25	0.07071	2.45694003
3	7		3	200	5	15	-	-	•	17.15	17.1							17.125	0.03536	2.68517557
4	8		5	200	5	25	•	•	+	20.417	20.4							20.4085	0.01202	3.22987716

Software Reliability G-O Model

-O Software Reliability Growth Model

Software Reliability Growth Modeling Cum Software Rel Growth Models (Duane, Logarithmic, Polynomial, Crow/AMSAA)

G-O Software Growth Mode Results Results Fig: 1, A 193.69296 Est. Defects - Faults B 0.000291266 Faults B 0.000291266 Faults B 0.000291266 Faults Inst. Relute Rate 0.001685398 att 11777 Hrs. Inst. Achieve MTBF 538.0979003 att 11777 Hrs. G-O model errors left 7.69296 Total Errors = 193.69296 Site of S% Colspan="2">Colspan="2">Max Errors Left 13.10 Max Errors Left 1.3264% Inst. Achieve MTBF 1.3264% Total Errors = 193.69296 Site of S% Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Inst. Achieve MTBF 538.0979803 att 11777 Hrs. Sol model errors left 1.3264% <td colspan="2</th> <th>Goel-Okumoto (G-O) NHP</th> <th>P Software Reliability G</th> <th>irowth Model</th> <th></th> <th></th> <th></th>	Goel-Okumoto (G-O) NHP	P Software Reliability G	irowth Model			
G-O Software Growth Mode Results Results Errors=A(1-Exp(-B x Time)) Fig. 1,- A 193.69296 Est. Defects - Faults B 0.000291266 Fault error rate RSQ 95.90% Fit Value Inst. Failure Rate 0.01685398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. S-O model errors left 7.69296 Total Errors = 193.69296 Enter upper bd. Conf. on Errors 95 Max Errors Left 1.3 JRSoft Slope Ratio <5% Criteria for Test Completion 1.3264% Test Index (2 to 5) 3	OfRSoft Model Information:					
G-O Software Growth Mode Results Results Errors=A{1-Exp(-B x Time)} Fig: 1,- A 193.69296 Est. Defects - Faults B 0.000291266 Fault error rate RSQ 95.90% Fit Value Inst. Failure Rate 0.001858398 at 11777 Hrs. Inst. Failure Rate 0.001858398 at 11777 Hrs. G-O model errors left 7.69296 Total Errors = 193.69296 Inter upper bd. Conf, on Errors 95 Max Errors Left 1.3 JRSoft Slope Ratio <\$% Criteria for Test Completion						
Fig. 1,- A 193.69296 Est. Defects - Faults B 0.000291266 Fault error rate RSQ 95.09% Fit Value Inst. Failure Rate 0.001858398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. S-O model errors left 7.69296 Total Errors = 193.68296 Inst or SNG Criteria for Test Completion 1.3264% Test Index (2 to 5) 3		G-O Software Growth Mode Results				
A 193.69296 Est. Defects - Faults B 0.000291266 Fault error rate RSQ 95.90% Fit Value Inst. Failure Rate 0.001858398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. S-O model errors left 7.69296 Total Errors = 193.69296 Inst. Achieve MTBF 95 Max Errors Left 13.1 WRSoft Slope Ratio <5% Criteria for Test Completion		Er	Errors=A{1-Exp(-B x Time)}			
B 0.000291266 Fault error rate RSQ 95.90% Fit Value Inst. Failure Rate 0.00168398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. S-O model errors left 7.69296 Total Errors = Inst. Achieve MTBF 95 Max Errors Left 1100 JRSoft Slope Ratio <\$% Criteria for Test Completion		Α	193.69296	Est. Defects - Faults		
RSQ 95:90% Fit Value Inst. Failure Rate 0.001658398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. G-O model errors left 7.69296 Total Errors = 193.69296 95 Max Errors Left 13264% Test Index (2 to 5) 3		В	0.000291266	Fault error rate		
Inst. Failure Rate 0.001858398 at 11777 Hrs. Inst. Achieve MTBF 538.0979803 at 11777 Hrs. G-O model errors left 7.69296 Total Errors = Inst. Achieve MTBF 95 Max Errors Left MSR5th Slope Ratio <5% Criteria for Test Completion		RSQ	95.90%	Fit Value		
Inst. Achieve MTBF 538.0979803 at 11777 Hrs. S-O model errors left 7.69296 Total Errors = 193.69296 inter upper bd. Conf. on Errors Max Errors Left 13.1 MRSoft Slope Ratio <5% Criteria for Test Completion 1.3264% Test Index (2 to 5) 3 ime Left Comment (see comment and use Col. H)		Inst. Failure Rate	0.001858398	at 11777 Hrs.		
G-O model errors left 7.69296 Total Errors = 193.69296 Inter upper bd. Conf. on Errors 95 Max Errors Left 13.1 JRSoft Slope Ratio <5% Criteria for Test Completion		Inst. Achieve MTBF	538.0979803	at 11777 Hrs.		
inter upper bd. Conf. on Errors 95 Max Errors Left 13.1 DfRSoft Slope Ratio <5% Criteria for Test Completion 1.3264% Test Index (2 to 5) 3 Fime Left Comment (see comment and use Col. H)	G-O model errors left		7.69296	Total Errors =	193.69296	
DfRSoft Slope Ratio <5% Criteria for Test Completion 1.3264% Test Index (2 to 5) 3	inter upper bd. Conf. on Errors		95	Max Errors Left	13.1	
Fime Left Comment (see comment and use Col. H)	OfRSoft Slope Ratio <5% Criteria for Test Completion		1.3264%	Test Index (2 to 5)	3	
	Time Left Comment (see con	nment and use Col. H)				-

Data Entry Area For Go Model				
eave all lines blank that are not in	n use			in Fig. 1
	Enter (or leave blankk)	Enter Software	G-O Model Data	
Num.	Cumulative Time	Cum. Errors	Fit	
1	0	0	0	
2	131	11	7.251304642	
3	283	14	15.32548563	
4	330	16	17.75061209	
5	373	20	19.94045088	
6	458	36	24.18933777	
7	680	54	34.80279201	
8	1278	69	60.20170136	
9	1782	84	78.42749919	
10	2332	96	95.48950453	
11	3248	109	118.486168	
12	3928	118	131.9993403	
13	4641	121	143.5685706	
14	5272	132	151.9838855	
15	5845	139	158.3950704	
16	6370	151	163.40021	
17	6963	156	168.2054751	
18	6964	163	168.2128977	
19	7250	169	170.2494397	
20	7633	178	172.7240854	
		101		

Enter End Time						
	11777			Average	Inst. MTBF	Instaneous
	Errors	Cumulative		Failure	Enter Use	Fail Rate
Plot (Cell H19)	Prediction	Mean Time	Failure Rate	Per Year	Duty Cycle	Data
Cumulative	at End	Between Failures (Errors)	Fit Results	Enter Hrs/Yr.	in Percent	Inst
Time	Time	Cum MTBF		8760	100	
159.1486486	8.773644081	18.14	0.055128612	482.92664	18.139401	0.083969466
318.2972973	17.14987139	18.56	0.05263147	461.0516763	19.000039	0.019736842
477.4459459	25.14668359	18.99	0.05024744	440.1675755	19.901511	0.042553191
636.5945946	32.7812669	19.42	0.047971399	420.2294546	20.845754	0.093023256
795.7432432	40.07002909	19.86	0.045798455	401.1944641	21.834798	0.188235294
954.8918919	47.0286347	20.30	0.043723938	383.021695	22.870767	0.081081081
1114.040541	53.67203873	20.76	0.041743389	365.6720916	23.955889	0.025083612
1273.189189	60.01451874	21.21	0.039852553	349.1083674	25.092495	0.029761905
1432.337838	66.06970559	21.68	0.038047366	333.2949245	26.283029	0.021818182
1591.486486	71.85061271	22.15	0.036323947	318.1977777	27.530048	0.01419214
1750.635135	77.36966404	22.63	0.034678594	303.7844813	28.836233	0.013235294
1909.783784	82.63872078	23.11	0.033107769	290.0240591	30.204391	0.004207574
2068.932432	87.66910686	23.60	0.031608098	276.886938	31.637462	0.017432647
2228.081081	92.47163324	24.09	0.030176357	264.3448846	33.138527	0.012216405
2387.22973	97.05662123	24.60	0.028809469	252.3709443	34.71081	0.022857143
2546.378378	101.4339246	25.10	0.027504496	240.9393836	36.357692	0.008431703
2705.527027	105.6129507	25.62	0.026258634	230.0256343	38.082712	#N/A
2864.675676	109.6026809	26.14	0.025069206	219.6062414	39.889577	0.020979021
3023.824324	113.4116896	26.66	0.023933654	209.6588123	41.782169	0.023498695
0400 070070	447.040400	07.40	0.00004054	000 4040004	40 704550	0.040070405

1	5000	1000

DfRSoft...

DfRSoft... Overview Information

- This overview shows only a select fraction of the tools available in DfRSoft. Details available in the website:
 www.dfrsoft.com
- A free 30 day trial copy is available with professional help from:
 - dfrsoft@gmail.com or support@dfrsoft.com
 - Call to inquire (617) 943-9034
 - We appreciate customer feedback and can respond quickly to any requests. Please let us know how we can improve our software for your needs or if you have questions. Thank You

Dr. Alec Feinberg

Author: Design for Reliability, Founder of DfRSoft

DfRSoft...

page 38 / March 27, 2015